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A new Fortran 95 implementation of the DFTB (density functional-based tight binding) method has been
developed, where the sparsity of the DFTB system of equations has been exploited. Conventional dense
algebra is used only to evaluate the eigenproblems of the system and long-range Coulombic terms, but
drop-in O(N) or O(N2) modules are planned to replace the small code sections that these entail. The
developed sparse storage structure is discussed in detail, and a short overview of other features of the new
code is given.

I. Introduction

The density functional-based tight binding (DFTB) method
is a very efficient tool for carrying out quantum mechanical
simulations. Several contributions in this special issue describe
the mathematical and physical basis of the method as well as
the broad range of systems where it delivers reliable results.
The current contribution focuses on a technical aspect of the
DFTB method, namely, the sparsity of the corresponding
equations and how this can exploited to build an efficient DFTB
implementation. The general DFTB equations are not derived
here. Interested readers should consult the appropriate contribu-
tions in this volume or the literature.1-5 As a proof of concept,
the sparse technique described here has been implemented in
the DFTB+ code.

There has been extensive work on developing sparse struc-
tures for quantum chemistry, and it is not our intention to review
the substantial literature of sparse matrices here. A recent
discussion of some of the techniques is presented in ref 6. Also,
the DFTB+ project is not the first attempt to create a DFTB
implementation, which exploits the sparsity of the underlying
equations. Zhang et al. used the SLEPc external library to solve
the eigenvalue problem in a sparse format.7 Yang et al. replaced
the diagonalization with theO(N) divide and conquer technique,8

which delivers only the density matrix for the investigated
system but not the eigenvalues and the eigenvectors. However,
a detailed description of the storage type of the sparse matrices
was not given in those cases. Sternberg et al. also created a
DFTB-basedO(N) method9 with a rather complex special
storage format.

Regarding the creation of the density matrix, the DFTB+
code is not as developed as in the earlier attempts. Currently
it uses conventional dense diagonalization algorithms, but
the extension of the code is planned to incorporate diagonal-
ization and/or density matrix creation schemes. At the end of
this article, a brief list of additional features of this code is
given.

II. Sparsity of the DFTB equations

In the DFTB approach, every one-electron wavefunction
ψ(r ) is expressed as a linear combination of atomic orbitals
φµ(r )

(Throughout this article, the convention is used that summations
on Greek letters run over all basis functions.) The main task is
to solve the eigenproblem

where

are the Hamiltonian and the overlap matrices, respectively. The
index σ indicates the spin state (v or V).

If orbitals φµ and φν are located on atomsA and B,
respectively, then the Hamiltonian matrix elementHµν

σ for the
spin-polarized self-consistent charge (scc) case can be written
as

The first term is the matrix element of the non-scc DFTB
Hamiltonian. The second term is the scc contribution, where
the sum runs over all shells (l′′) of all atoms (C) in the system.
A “shift vector’’, γAl,Cl′′∆qCl′′, containing the scc potential at
siteAl can be constructed.γ itself consists of a long-range pure
Coulombic term and a short-range termS
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whereRAC is the distance between atomsA andC andUA,l and
UC,l′′ are the Hubbard parameters for the appropriate atoms and
shells. The charge difference∆qCl′′ is the difference between
the sum of the Mulliken charges on shelll of atomC and the
total charge on that shell in an isolated atom.

The last term of eq 3 contains the spin contribution. Its sign
depends on the spin channel,σ. The interaction between the
spins is determined by the spin coupling constantsWAll′, where
l and l′ are shells on the same atom. The spin polarizationmAl

of shell l on atomA is the difference between the sum of the
Mulliken charges on the spin up and spin down orbitals in that
shell

The matrix elements of the non-scc Hamiltonian and overlap
matrices vanish with increasing distance between the atoms so
that in large systems both matrices contain mostly zeros. The
pattern of the possible nonzero elements is determined by the
geometry of the system to be calculated (as well as the order of
the numbering used for the atoms). As shown in eq 4, the scc
shift contribution contains both short- and long-range terms.
Nevertheless, the total scc contribution is screened by the overlap
matrix so that the pattern of the matrix elements with nonva-
nishing scc contributions is the same as the overlap matrix.
Because the non-scc Hamiltonian and the overlap matrix are
tabulated on the same grid up to the same cutoff, the patterns
of the nonzero scc and the nonzero non-scc matrix elements
are the same. Similarly, the spin contribution is also multiplied
by the overlap matrix, giving rise to the same pattern. By
determining this pattern at the start (or during a calculation if
the geometry has changed), it can be ensured that only the
relevant matrix elements are evaluated and stored.

III. Sparse Storage

The storage scheme implemented in the DFTB+ code is
dictated by the physical nature of the system rather than by
abstract mathematical criteria as would be the case with many
common sparse formats (e.g., compressed column/row format).
This simplifies the source code and also promises better cache-
line reuse behavior because inside the loops the elements are
accessed in the order of their storage in memory. The implented
technique is similar to that of Challacombe’s atom-blocked
sparse storage10 extended to periodic boundary conditions with
arbitrary k-point sampling. The next two sections contain
detailed descriptions of the storage scheme for nonperiodic and
periodic systems.

A. Nonperiodic Systems.To establish sparse storage, the
Hamiltonian and the overlap matrices are first partitioned into
atomic blocks, with each block containing all of the matrix
elements related to the interaction of a certain atom pair. The
elements inside the nonzero blocks are stored in a 1D vector.
Starting with the leftmost column of blocks, the blocks are stored
top to bottom column after column, whereby elements of each
block are stored in column major order. Figure 1 shows the
storage order of the elements for a fictitious system consisting
of four atoms with four orbitals on each, as shown in Figure 2.
Because the Hamiltonian and the overlap matrices are sym-
metric, only blocks in the lower triangle are stored. For the on-
site blocks, it would be sufficient to store only one triangle of
each block, but to keep the storage scheme simple, both triangles
are stored, as for all of the other off-site blocks.

The current scheme allows a simple and transparent way of
accessing the matrix elements. A neighbor map is built at the

beginning of the calculation (and after every geometry update)
containing information about the interacting atoms. Because of
the symmetry of the matrices, only the neighbor relationships
where the index of the first interacting atom is less than or equal
to the index of the second interacting atom are stored.

B. Periodic Systems.The sparse storage introduced in the
previous section can be extended to periodic structures as well.
However, one has to consider that in the periodic case the basis
functions are Bloch functions, with each of them built from an
atomic orbitalφµ as

where the summation runs over all possible translation vectors
R of the periodic system. Such Bloch functions can be
constructed for every orbitalφµ and for every pointk in the
Brillouin zone of the periodic system. The numberN specifies
the number of cells in the repeating region.

As shown in ref 11, the matrix elements of an arbitrary
operatorÔ with the translational symmetry of the lattice can
be written as

One can think aboutOµν(R) as a rectangularly shaped matrix
built from square submatrices belonging to specific values of
R. For the Hamiltonian and the overlap matrices, only a finite
number of submatrices must be considered because the matrix

mAl ) qAlv - qAlV (5)

Figure 1. Storage order of the matrix elements for the sparse storage
of the Hamiltonian and the overlap matrices for the fictious system
shown in Figure 2. The numbers indicate the atoms, and s, px, py, and
pz are the orbitals of the individual atoms. The red line with the arrow
indicates the storage order. Dashed lines indicate atomic blocks, and
dotted lines indicate the rows and columns of the matrix. Only nonzero
blocks in the lower triangle (shaded background) are stored.

Figure 2. Fictitious nonperiodic system of four atoms with first
neighbor interaction only. The red arrows indicate the interactions
between the atoms.
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elements go to zero with increasing length ofR. Figure 3 shows
a fictitious periodic system of four atoms with first neighbor
interactions only. The structure of the appropriate rectangular
Hamiltonian or overlap matrix is shown in Figure 4, assuming
that each atom has only four orbitals.

The elements of the rectangular matrices are stored in a
similar way as for the nonperiodic case. Starting with the

leftmost column of atomic blocks, those with nonzero elements
are stored from top to bottom, whereby the elements inside a
block are written to the storage vector in column major order.
Analogous to the nonperiodic case, only one triangle of each
square matrix must be considered. Because the matrix elements
of the rectangular matrices are all real, the following relation is
valid for an operatorÔ having the same translational symmetry
as the lattice:

Accordingly, every element in the upper triangle of a certain
submatrixOµν(R0) is equal to the transposed element in the
lower triangle of the submatrixOνµ(-R0). For example, for the
system in Figure 3, there is no need to store the interaction
between an arbitrary orbital on atom 2 and another orbital on
periodic image 1b of atom 1 if the equivalent interaction between
the same orbitals on atoms 1 and 2a has already been stored.

The rectangular Hamiltonian and the overlap matrix are real,
and the number of nonzero atomic blocks scales as the number
of atoms for large systems, so it is advantageous to store those
matrices in that form. If the square (complex) form is needed
(e.g., for solving the eigenproblem), then the rectangular form
can be very easily folded back by considering the appropriate
phase factors:

An analogous reverse transform can be defined as

where the sum runs over the k points used for the calculation.
The factorωl is the weight of the k pointk l. If the quantity,
which is transformed back, is used only in expressions where
it is multiplied by the overlap (or the Hamiltonian) matrix, then
it is sufficient to consider only those translation vectorsR that
made nonzero contributions to the overlap (or the Hamiltonian).
The next section describes this requirement in more detail.

The strategy chosen for storing and handling the matrices
for periodic systems is a natural extension of the strategy for
nonperiodic systems. This has the advantage that the imple-
menting routines can be used for both cases without the need
for case differentiation. Only the neighbor maps must be
constructed with regard to the applied boundary conditions.

IV. Analysis in Real Space

As pointed out in the previous section, any square matrix
can be transformed into a rectangular form with the help of eq
10. This is especially useful for those quantities that are
multiplied by the overlap matrix in all the expressions where
they occur. In that case, it is sufficient to use only those values
of R for the transformation that were also used to construct the
rectangular overlap matrix. Similarly, it is enough to store those
atomic blocks from the resulting rectangular matrix, where the
corresponding blocks in the overlap matrix have nonzero
elements (and had been, therefore, also stored). The expressions
can then be evaluated rapidly using the sparse form. As
examples, the Mulliken charge analysis and the non-scc force
calculation are demonstrated below. Because in the rectangular

Figure 3. Fictitious periodic system of four atoms with first neighbor
interaction only. The red arrows indicate the interactions between the
atoms. Dashed lines delimit the periodic images of the central cell.
Only images with nonvanishing interactions with the central cell are
shown.

Figure 4. Storage order of the matrix elements for the sparse storage
of the Hamiltonian and the overlap matrices for the fictitious system
shown in Figure 3. Numbers indicate the atoms. The red line with the
arrow shows the storage order of the elements. Dashed lines indicate
atomic blocks, and dotted lines indicate the rows and columns of the
matrix belonging to a specific orbital of the current atom (orbital names
omitted). Only nonzero blocks in the lower triangles (shaded back-
ground) are stored.

Oµν(R0) ) 〈φµ(r )|Ô|φν(r - R0)〉 )
〈φν(r - R0)|Ô|φµ(r ))〉* ) 〈φν(r - R0)|Ô|φµ(r ))〉
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matrix formalism the nonperiodic matrices are special cases of
the more general periodic ones, both examples are shown for
periodic boundary conditions. It should be also noted that
although for the sake of better visualization we always refer to
rectangular matrices, in the actual implementation only the
nonzero blocks of those matrices need to be stored and used in
the evaluation of the expressions. This assures scaling behavior
that is linear in the number of atoms.

A. Mulliken Analysis. When solving the eigenproblem in a
certain k pointk, the resulting one-electron wave functions
ψi

k(r ) are obtained as a linear combination of the Bloch
functions defined in eq 6:

The number of electrons in leveli in k-point k can be then
written as

whereni
k is the occupation number for the selected eigenlevel

in the given k point. By substituting the identity operator into
eq 7, the overlap of two Bloch functions can be written as

The total number of electronsNe in the system can be obtained
by summing upqi

k from all the eigenlevels and k points,
whereby the number of electrons in each k point must be
multiplied by the weight of the given k point:

The summation forl goes from 1 to the number of k points,
and the summation fori goes from 1 to the number of
eigenlevels in each k point. By introducing the density matrix
for k point kl as

the previous equations can be written as

Accordingly, a packed (real space) density matrix can be
introduced as

so that using one obtains

Putting this back in, the total charge (or the charge of a certain
orbital qν) can be calculated as

with

being the charge on orbitalφν. The expression forqν contains
only an element-wise multiplication of rectangular matrices
Sµν(R) andPµν(R). Because only the lower triangles are stored
for submatricesSµν(R) andPµν(R) as a result of the symmetry,
additional care must be taken so that the contribution from
orbitalφµ to the chargeqν must also be accounted for byqµ (as
the contribution from orbitalφν).

B. Non-scc Forces.The non-scc contribution to the forces
on atomC can be calculated in the DFTB method as

where

By using eq 7, the expression for the non-scc force can be
rewritten as

By introducing the energy-weighted density matrix

and similar to eq 18 its real space rectangular equivalent

eq 22 can be rewritten as

Similar to the Mulliken analysis, this expression can also be
fully evaluated in the sparse form. After calculating the
derivatives with respect toRC for the stored (nonzero) blocks,
only an element-wise multiplication of matrix elements is
required (while allowing for the skew symmetry of derivatives
of H0 andS).

V. Performance

The sparse storage technique described in the previous
sections had been implemented in the DFTB+ code. This code
is the successor of previous DFTB implementations DFTB and
DYLAX. During its design, special attention was paid to the
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sparsity of the DFTB equations. Almost all operations are
accomplished in the sparse format and scale linearly in time
and memory with the number of atomic orbitals in the system.

A. Testing Environment. To compare the efficiency of the
sparse algorithms versus their dense version, we investigated
their performance for the cases of a rather sparse and a rather
dense system. For the former, we chose cylindrically shaped
unrelaxed silicon nanowires (SiNW) along the〈110〉 direction
with various supercell lengths along the periodic axis of the
wire. The diameter of each wire was the same (1.5 nm). The
dense system was represented by supercells of various sizes
containing a cut from bulk silicon with a vacancy (VSi) in the
middle. The vacancy was needed to induce charge transfer in
the system to test the performance of the algorithms during the
scc loops. The silicon was described with an sp basis using the
parametrization from the pbc-0-1 parameter set.21 For every
system, we made benchmarks with periodic as well as with
nonperiodic boundary conditions. Because of the missing
functionality of arbitrary k-point sampling in the old DFTB code,
all periodic calculations were made using theΓ point as only
the k point.

The tests for the sparse algorithms were executed using the
official 1.0 release of the DFTB+ code. Because this code does
not contain the dense versions of the tested algorithms, we
compared it against the old official (now obsoleted) DFTB code,
making sure that both codes use the same diagonalizer
(LAPACK12 divide and conquer) so that comparisons of total
running times are fair. Both codes were compiled with the Intel
Fortran compiler (version 9.1 for the EM64T architecture) using
exactly the same (aggressive) optimization options and the same
LAPACK library (Intel MKL 8.1.1). The tests were executed
on Pentium Dual Core machines (CPU frequency 2.6 GHz,
cache size 4096 KB). The test runs always used only one thread.
The benchmark data was calculated by averaging over timing
results of five subsequent runs. The timing information was
obtained by the cputime Fortran call, except for the total execution
time where the user time for the process (as returned by the
Unix command time) was used.

B. Sparse versus Dense Algorithms.We tested both the
sparse algorithm for the Mullikan population analysis and the
sparse algorithm for the non-scc force calculation in DFTB+
versus their dense counterparts in the old DFTB code. The sparse
version of the Mullikan population analysis turned out to be
too fast for reliable timing data because even for systems with
more than 1000 atoms its execution took less than 10-2 s.
Therefore, only the benchmark data for the non-scc force
calculations are presented here.

Figures 5 and 6 show the execution times for the silicon
vacancy and the silicon nanowire, respectively, using different
system sizes. It can be clearly seen that the sparse version of
the algorithm scales linearly with the number of atoms (N) in
the system and the dense algorithm shows a scaling behavior
of N2. The sparse algorithm handles periodic and non-periodic
systems in a unified framework; therefore, the performance for
the same system with and without a periodic boundary condition
is nearly identical. In the dense implementation, the periodic
boundary condition causes a significant time overhead for the
calculation of the non-scc forces.

C. Total Running Times. The performance scaling of an
entire calculation is, for large systems, determined by the
component with the worst scaling behavior. In DFTB+, there
are currently two major components that are not implemented
using linear scaling algorithms: diagonalization of the Hamil-
tonian and summation of the Coulomb interaction.

Diagonalization is currently performed using conventional
square matrix techniques, as implemented in LAPACK. The
sparse matrices are converted into the square form before
diagonalization. Because theO(N3) cost of diagonalizing the
Hamiltonian is the worst scaling step (in time) during a DFTB
calculation, alternative approaches will also be offered in a near-
term implementation. We plan to provide interfaces to various
external libraries utilizing diagonalization in the sparse format.
This should give better perfomance for extremely sparse
systems. (However, bad scaling and the issue of quadratically
scaling storage for the eigenvectors still remain.) Additionally,
the alternative approach of replacing the diagonalization with
an order-N method is also underway, with the divide and
conquer13 method being initially considered. Because this
method had already been applied to DFTB,8 we do not expect
any difficulties with its implementation.

As shown in eqs 3 and 4, the scc contribution to the
Hamiltonian matrix contains a sum with pure Coulombic1/R
terms. To calculate this contribution, the conventional Ewald
summation is used. The scaling behavior for the construction
of the potential isO(N2). Although the diagonalization, not the

Figure 5. Performance of the non-scc force calculation for a silicon
vacancy with different numbers of atoms around it. The filled circles
and triangles indicate the results made with the sparse algorithm using
periodic and nonperiodic boundary conditions, respectively. The empty
circles and triangles show the results using the dense algorithm.

Figure 6. Performance of the non-scc force calculation for unrelaxed
silicon nanowires containing different numbers of atoms. The diameter
of the nanowires is the same (1.5 nm) in all calculations. The filled
circles and triangles indicate the results made with the sparse algorithm
using periodic and nonperiodic boundary conditions, respectively. The
empty circles and triangles show the results using the dense algorithm.
(The curve for the periodic sparse timing data overlays the nonperiodic
sparse one.)
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Ewald summation, is the real bottleneck in the DFTB+ code at
the moment, a replacement of the current Ewald scheme with
an O(N log N) scheme14 is considered.

Despite the fact that the run time of the DFTB+ code for
large systems is dominated by the diagonalization, the new
structure of the code and its linear scaling components should
already account for a significant performance improvement
compared to that of the old DFTB code. In addition to the
performance of the individual code components, we also
investigated the running times for complete calculations. The
test systems and the test environment were the same as for the
non-scc force calculation tests. The calculations had been
performed using self-consistent charges (scc) by using the same
mixing algorithm with both codes (modified Broyden mixing15).
Both codes performed 10 scc loops for every test case, followed
by a subsequent (scc) force calculation. Figures 7 and 8 show
the timing results for the silicon vacancy and the silicon
nanowire, respectively.

The scaling of the total run time of both codes is similar.
However, because of more efficient algorithms (apart from the
diagonalization), DFTB+ heavily outperforms the old DFTB
code for systems larger than 50-60 atoms. We re-emphasize
that the tests presented here concentrated only on the perfor-

mance improvements due to the algorithmic differences between
the two implementations. We modified the old version to use
the same diagonalizer as DFTB+; otherwise, the timings for
the older code have been increased by almost 100%.

VI. Additional Features

An additional advantage of the sparse technique is the re-
duced storage for the Hamiltonian, overlap, and density matrices.
This is especially crucial in those cases where many instances
of those matrices must be stored at the same time. Typical
examples are those cases where a mixing of the density matrices
of subsequent iterations is required (e.g., LDA+U correction).
In the case of a Broyden mixing scheme, the density matrices
of all iterations must be stored, yielding a huge difference in
the memory requirement between the conventional square and
the sparse matrices. Table 1 shows the ratio between the size
of the sparse storage format in DFTB+ and the size of the
conventional square matrix for the test systems (for one
matrix).

Besides the use of sparse matrices, the DFTB+ code offers
several other features, some of them being unique among current
DFTB implementations. It allows calculations with elements
having angular momenta up to f. The code also allows collinear
spin-polarized calculations (using the more recent spin formal-
ism5) and arbitrary k-point sampling. To circumvent the
deficiencies of LDA and GGA in treating elements with par-
tially occupied d or f shells, the LDA+U method had been
derived for the DFTB formalism and implemented using the
sparse matrix structures presented here.16 The code can also
apply corrections for van der Waals and dispersion interac-
tions,17,22 which are also not properly described by LDA or
GGA.

VII. Summary

We have developed a technique to store the matrices used in
the DFTB method in a sparse format. The size of the matrices
scales, for large systems, linearly with the number of atoms in
the system. The stored matrices all are real for periodic as well
as nonperiodic calculations. Many operations during a DFTB
calculation can be directly evaluated in this sparse format, giving
rise to a substantial speed gain. Additionally, the current
formalism allows identical treatment of most operations for
periodic and nonperiodic systems so that most of the routines
need not account for the boundary conditions of the system.
The applicability of the developed technique has been demon-
strated in the DFTB+ code.

Figure 7. Performance of total energy calculations for a silicon vacancy
in bulk silicon with different numbers of atoms around it. The filled
circles and triangles indicate the results made with DFTB+ using
periodic and nonperiodic boundary conditions, respectively. The empty
circles and triangles show the results using the old DFTB code.

Figure 8. Performance of total energy calculations for unrelaxed silicon
nanowires containing different numbers of atoms. The diameter of the
nanowires is the same (1.5 nm) in all calculations. The filled circles
and triangles indicate the results made with DFTB+ using periodic
and nonperiodic boundary conditions, respectively. The empty circles
and triangles show the results using the old DFTB code.

TABLE 1: Sparsity of the Relevant Matrices for Silicon
Vacancies in Bulk Silicon and for Silicon Nanowiresa

sparsity

system no. of atoms periodic nonperiodic

VSi 31 0.750 0.307
63 0.375 0.182

127 0.188 0.110
255 0.094 0.063
511 0.047 0.034

1023 0.023 0.018

SiNW 34 0.531 0.531
68 0.251 0.251

136 0.125 0.125
272 0.058 0.058
544 0.030 0.030

1088 0.015 0.015

a The sparsity is calculated as the size ratio of the sparse storage
format and the conventional square matrix for the given system.
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